5 research outputs found

    Review of Technical Design and Safety Requirements for Vehicle Chargers and Their Infrastructure According to National Swedish and Harmonized European Standards

    Get PDF
    Battery electric vehicles demand a wide variety of charging networks, such as charging stations and wallboxes, to be set up in the future. The high charging power (typically in the range of a couple of kW up to a couple of hundred kW) and the possibly long duration of the charging process (up to more than 24 h) put some special requirements on the electrical infrastructure of charging stations, sockets, and plugs. This paper gives an overview of the technical design requirements and considerations for vehicle charging stations, sockets, and plugs, including their infrastructure, according to the Swedish Standard 4364000, "Low-voltage electrical installations-Rules for design and erection of electrical installations", and the corresponding harmonized European standards. In detail, the four internationally categorized charging modes are explained and the preferable charging plugs, including their two-bus communication, according to European Directives are shown. The dimensioning of the supply lines and the proper selection of the overcurrent protection device, the insulation monitor, and the residual current device are described. Furthermore, a comprehensive overview of the required safety measures, such as the application of an isolation transformer or the implementation of an overvoltage protection mechanism, and the limits for conducted electromagnetic emissions, such as low-frequency harmonics or high-frequency (150 kHz to 108 MHz) emissions, are given

    Online and On-Board Battery Impedance Estimation of Battery Cells, Modules or Packs in a Reconfigurable Battery System or Multilevel Inverter

    Get PDF
    This paper shows two approaches to determine the battery impedance of battery cells or battery modules when used in a reconfigurable battery system (RBS) or in any type of modular multilevel converter (MMC) for electric drive applications. A generic battery model is used and the concepts of the recursive time and frequency-domain parameter extraction, using a current step and an electrochemical impedance spectroscopy, are explained. Thus, it is shown and demonstrated that the balancing current of neighboring cells/modules ,when in parallel operation, can be used, similar to the time-domain parameter extraction utilizing a current step, to determine the battery parameters. Furthermore, it is shown and demonstrated that a part of the inverter can be used as variable AC voltage source to control a sinusoidal current through the motor inductances of the drive train, which can be injected to the inserted battery cells/modules of an adjacent phase to perform an on-board impedance spectroscopy. Using either of the two presented approaches, the individual battery impedances can be easily determined, yielding the state of health (SOH) and the power capability of individual battery cells/modules. Nonetheless, the analyzed approaches were just considered to be applied at machine standstill, which is not suitable for grid-tied applications

    Capacitor Voltage Balancing of a Grid-Tied, Cascaded Multilevel Converter with Binary Asymmetric Voltage Levels Using an Optimal One-Step-Ahead Switching-State Combination Approach†

    Get PDF
    This paper presents a novel capacitor voltage balancing control approach for cascaded multilevel inverters with an arbitrary number of series-connected H-Bridge modules (floating capacitor modules) with asymmetric voltages, tiered by a factor of two (binary asymmetric). Using a nearest-level reference waveform, the balancing approach uses a one-step-ahead approach to find the optimal switching-state combination among all redundant switching-state combinations to balance the capacitor voltages as quickly as possible. Moreover, using a Lyapunov function candidate and considering LaSalle\u27s invariance principle, it is shown that an offline calculated trajectory of optimal switching-state combinations for each discrete output voltage level can be used to operate (asymptotically stable) the inverter without measuring any of the capacitor voltages, achieving a novel sensorless control as well. To verify the stability of the one-step-ahead balancing approach and its sensorless variant, a demonstrator inverter with 33 levels is operated in grid-tied mode. For the chosen 33-level converter, the NPC main-stage and the individual H-bridge modules are operated with an individual switching frequency of about 1 kHz and 2 kHz, respectively. The sensorless approach slightly reduced the dynamic system response and, furthermore, the current THD for the chosen operating point was increased from 3.28% to 4.58% in comparison with that of using the capacitor voltage feedback

    Multi-Agent Reinforcement Learning-Based Decentralized Controller for Battery Modular Multilevel Inverter Systems

    No full text
    The battery-based multilevel inverter has grown in popularity due to its ability to boost a system’s safety while increasing the effective battery life. Nevertheless, the system’s high degree of freedom, induced by a large number of switches, provides difficulties. In the past, central computation systems that needed extensive communication between the master and the slave module on each cell were presented as a solution for running such a system. However, because of the enormous number of slaves, the bus system created a bottleneck during operation. As an alternative to conventional multilevel inverter systems, which rely on a master–slave architecture for communication, decentralized controllers represent a feasible solution for communication capacity constraints. These controllers operate autonomously, depending on local measurements and decision-making. With this approach, it is possible to reduce the load on the bus system by approximately 90 percent and to enable a balanced state of charge throughout the system with an absolute maximum standard deviation of 1.1×10−5. This strategy results in a more reliable and versatile multilevel inverter system, while the load on the bus system is reduced and more precise switching instructions are enabled

    Bidirectional Charging for BEVs with Reconfigurable Battery Systems via a Grid-Parallel Proportional-Resonant Controller

    No full text
    This paper investigates the potential of bidirectional charging using modular multilevel inverter-based reconfigurable battery systems via grid-parallel control. The system offers several advantages such as modularity, scalability, and fault-tolerance over conventional battery electric vehicle systems. It is designed for seamless integration with the grid, allowing bidirectional power flow and efficient energy storage. Within this study, the battery system is first simulated in Matlab/Simulink and later implemented into a hardware setup. Eventually, the simulation results and the measurements have been compared and evaluated. Thereby, startup sequences and constant current scenarios were investigated. It has been shown that the system is fully capable to charge and discharge the batteries in the grid-parallel connection, thus enabling bidirectional charging with close to full drive system power. The current total harmonic distortion complies with grid regulations and can potentially improve the grid quality. The proposed system offers significant potential for grid-integrated energy storage systems, addressing the challenges associated with renewable energy integration, grid stability, and energy management. In comparison to other publications on this topic, the proposed approach does not need additional dedicated power electronic hardware and has more degrees of freedom for current control
    corecore